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The problem of decaying isotropic turbulence has been studied using a Wiener- 
Hermite expansion with a renormalized time-dependent base. The theory is largely 
deductive and uses no modelling approximations. It has been found that many proper- 
ties of large Reynolds number turbulence can be calculated (at least for moderate time) 
using the moving-base expansion alone. Such properties found are the spectrum shape 
in the dissipation range, the Kolmogorov constant, and the energy cascade in the 
inertial subrange. Furthermore, by using a renormalization scheme, it is possible to 
extend the calculation to larger times and to initial conditions significantly different 
from the equilibrium form. If the initial spectrum is the Kolmogorov spectrum per- 
turbed with a spike or dip in the inertial subrange, the process proceeds to eliminate 
the perturbation and relax to the preferred spectrum shape. The turbulence decays 
with the proper dissipation rate and several other properties are found to agree with 
measured data. The theory is also used to calculate the energy transfer and the 
flatness factor of turbulence. 

1. Introduction 
Based on the pioneering work of Wiener (1939, 1958) and Cameron & Martin (1947), 

a theory of t'urbulence, now called the Wiener-Hermite (WH) expansion, has been 
developed (see Imamura, Meecham & Siege1 1965; Meecham & Jeng 1958; Meecham & 
Clever 1971). The central idea is to expand the turbulent velocity field with respect to 
a complete set of stochastic functionals such that the first term in the expansion has 
Gaussian statistics and the higher-order terms represent deviations from Gaussianity. 
The expansion is in essence an expansion about Gaussianity designed to take advan- 
tage of the nearly Gaussian (in many ways) nature of turbulence. Two basic advan- 
tages of the WH theory should be emphasized: the results are necessarily realizable 
(all spectra are positive) and the theory is deductive, using no adjustable, or quasi- 
empirical, parameters. 

The results obtained by applying the WH expansion to the initial-value problem of 
decaying Burgers' model turbulence (Jeng et al. 1966; Orszag & Bissonnette 1967; Crow 
& Canavan 1970) showed some defects. The theory breaks down a t  moderately large 
Reynolds numbers, or decay times, owing to the lack of rapid convergence required 
for truncation of the expansion to  a computationally feasible number of terms (two 

t Present address: Poseidon Research, 11777 Sen Vicente Boulevard, Los Angeles, California 
90049. 
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terms is the realistic limit). Recent refinements in the theory making use of a convected 
set of base functionals (Clever & Meecham 1972), the moving base expansion, and later 
a renormalization scheme (Meecham 1972; Meecham, Iyer & Clever 1975) have demon- 
strated substantial improvement in the ability of the WH expansion to represent the 
decay of Bargers' model turbulence. 

Except for a few limited computations (Meecham & Jeng 1968; Meecham & Clever 
1971 ; Canavan 1970) the application of the WH expansion to the initial-value problem 
of the Navier-Stokes equations has not been demonstratedas thoroughly as for Burgers' 
model equation. Several investigators (Canavan 1970; Bodner 1969; Doi & Imamura 
1969) have presented the theoretical background required to develop a convected base 
for the three-dimensional WH expansion but the application to the Navier-Stokes 
equations has yet to be demonstrated with a reasonable degree of success. The primary 
goal of this paper is to apply these more recent refinements of the WH expansion to the 
initial-value problem of decaying, isotropic, three-dimensional turbulence. 

2. The vector Wiener-Hermite expansion 
As indicated above, much of the work with the WH expansion has been done using 

the Burgers model equation. We shall not emphasize this work further, but proceed 
immediately to the three-dimensional turbulence problem. For the study of three- 
dimensional turbulence an expansion of the velocity vector as a random function of 
the position vector is required. The generalization of the scalar WH expansion to 
vector form has been presented previously (Imamura, Meecham & Siege1 1965). The 
basic element of the vector WH expansion is the three-dimensional ideal white noise 
process motivated by partitioning three-dimensional space into cubic cells of volume L3, 
assigning to each cell an independent value chosen from a Gaussian distribution with 
zero mean and variance L-3, and then letting L go to zero (see Meecham & Jeng 1968). 

The three-dimensional ideal white noise process, denoted H,(x), has properties 
analogous to the scalar white noise process, H ( x ) .  For example 

(H,(x)) = 0, (2.1) 

and 

where the delta function with vector argument has been used to represent the product 
of delta functions of the three vector components. The bracket represents an ensemble 
average. 

The basis functionals of the WH expansion are constructed as Hermite polynomial 
combinations of H,(x) as follows: 

(H,(Xl) Hj(X2)) = 6 i jWl-  x2), 

(2.2) 1 
Hc,"(x) = H,(X), 

H(i2:(X1, x2) = H,(x,) q X 2 )  - 6,,6(x, - xz), 
H%l(Xl, x2, xs) = H,(Xl) H , ( X d  m 3 )  

- H,(xl) 6jlS(x2 - x3) - Hj(x2) Sir6(xl - x3) - 4(x3) 6,,6(x, - x2), etc. 

The vector WH functionals have properties analogous to those of the scalar WH 
functionals; for example (suppressing subscripts), (H(")( .)) = 0 for all n > 0 and 
(H(")( ) H(")(. )) = 0 if m # n. 
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The vector WH expansion for a homogeneous velocity field with zero mean is? 

Ui(X) = JK',j'(x - x') Hil)(x') dx' 
+JJK'i2,1(x- x', x - x") H$)(x', x") dx', dx" 

+.... (2 .3)  

The kernels are non-random tensor functions of vector arguments. 
For the study of homogeneous turbulence, it is more convenient to work in wave- 

number space. Let the following quantities be defined as generalized Fourier trans- 
forms as follows (we shall truncate the series after the second term): 

ui(x) = ($)31exp( -ik.x)u,(k)dk, 

Hy)(x)  = (&)'/exp (-ik.x)Hc,l)(k)dk, } (2 .4)  

( 2 . 5 ~ )  

and <Hi(kl) 4 ( k 2 ) )  = (277r)38iiiWl + k2). (2 .5b)  

Likewise, for the Fourier transforms of (2.2) we get 

I K',?l(x1, x,) = (&)'I/exp [ - i(k,. x1 + k,. x,)] K$!(kl, k,) dk, dk,, 

H$)(x,, x,) = (&)'/!exp [ - i(k,. x1 + k,. x,)] Hi:)(k,, k,) dk, dk,. 

Taking the Fourier transforms of (2 .1 )  and using the definitions above we get 

<H,(k)) = 0, 

H\')(k) = H,(k), ( 2 . 6 ~ )  

and H$?)(k,, k,) = H,(kl) H.(k,) - (2n)36 i j6 (k ,  + k,). (2 .6b)  

Furthermore, the orthogonality properties of the WH functionals in wavenumber 
space are the same as in physical space. 

If each of the definitions given in (2 .4 )  are substituted into (2 .3 )  and the resulting 
equation is Fourier transformed, the following WH expansion in wavenumber space is 
obtained: 

U,(k) = K$j)(k) H$l)(k) 

+ (&) '/K\?l( k - k', k') H$)(k - k ,  k') d k  

+ .... (2 .7 )  

3. Application to the Navier-Stokes equations 
The first two terms of the WH expansion of the generalized Fourier transform of 

velocity for homogeneous turbulence with zero mean velocity are given by (2 .7)  
where K(l) and K(2) are the first and second WH kernels and are deterministic (i.e. not 

t Throughout this paper, the integral symbol without limits is used to symbolize integration 
over all three-dimensional space. 
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random) functions of wave vector and time. H(l) is the (Fourier transformed) three- 
dimensional white noise process and H2) is the first non-Gaussian WH functional given 
by (2.6b). Equation (2.7) et seq. are implicitly time dependent (though time is not 
usually shown as an explicit argument). 

The incompressible Navier-Stokes equations in wavenumber space with the pressure 
term eliminated by using the continuity equation are 

kiui(k) = 0, ( 3 . 1 ~ )  

and ( (a /a t )  +k2u)~i (k)  = fri(l/Zn)’P,.,(k)l~~(k-q)u~(q)dq, (3 . lb)  

where the incompressibility tensors are defined as 

P,jl(k) = kjP,l(k) + klP,j(k), ( 3 . 2 ~ )  

and Pij(k) = aij - ki kj/k2. (3.2b) 

By substituting (2.7) into (3.1) we obtain an equation for the WH kernels. By using 
the statistical orthogonality of the WH functionals, this equation can be separated 
into two independent equations for the two WH kernels. The prodecure is as follows: 
first multiply byH$’)(p), average, use (2.5) and (2.6) to eliminate terms, and integrate 
over p to obtain the first equation; then multiply by H$:)( - k,, - k,) and repeat the 
process (integrating over k and q) to obtain the second equation. The two resulting 
equations for the two WH kernels are 

- + k2u K$:)(k) - 2i - ej l (k)  K$(k‘) Kj:A(k, - k’)dk‘ (: ) ( ln)3 s 
= /K(:](k) (H$l)(p)@?)(k))dp 

+ (&)3//K$i(k- k’, k’) (H;l)(p)@)(k- k’, k’))dk’dp, (3.3) 

and 
a (z + lk, + k2I2 I’) awl, k2) 

- &(k1+ k,)lP,j(k, + k2) [@(k2) K,’f)(k,) + K$)(kl) Kij)(k2)] 
3 

+ 2i ($) (k, + k2)1P,j(kl + k2)s[K%(k1, - k’) @L(k2, k’) 

+ Kjz(k2, - k’) K;.:L(k,, k’)] d k  

= +(2n)3/K‘:j(k) (Hi:)( - k,, - k2)&y)(k))dk 

+&//K${(k-k’, k’)(H$:)( -kl, - k2)I$;)(k- k’, k’))dkdk’. (3.4) 

In  (3.3) and (3.4) there are terms involving time derivatives of the WH functionals 
which cannot be evaluated from the basic properties of the expansion. These terms 
have been written on the right-hand sides of (3.3) and (3.4).  In  the original formulation 
of the WH expansion (Imamura et al. 1965; Meecham & Jeng 1968), the WH func- 
tionals were assumed to be independent of time. For this formulation, the fixed base 
formulation, the terms on the right-hand sides of (3.3) and (3.4) vanish and these 



Isotropic decaying turbulence 329 

equations form a closed system for the first two WH kernels. Given initial values for 
the first two kernels, these equations can be integrated forward in time and hence 
provide a solution to the problem of decaying homogeneous turbulence. The validity 
of the solution is, of course, contingent on rapid enough convergence of the WH 
expansion to justify truncation to two terms. (A three-term solution would seem out 
of the question since the third WH kernel is a fourth-order tensor function of three 
vector arguments.) Based on the observed fact that turbulence is nearly Gaussian in 
many respects, it is not unreasonable to expect the required rapid convergence of the 
WH expansion. 

It should be noted a t  this point that knowledge of the WH kernels is indeed a solution 
of the problem since any moment of the velocity field (and hence any measure of the 
turbulence) can be calculated in terms of the kernels. (In fact, the kernels can be used 
to calculate the members of the ensemble themselves.) For example, the energy 
spectrum - kinetic energy per unit mass per wavenumber - is given by (for isotropic 
turbulence) 

E(k) = 2nk2 Qii(k), 

= El(k) +E2(k).  (3.5) 

That part of the energy spectrum resulting from K(l), denoted E,(k),  has in the past 
been referred to as ‘Gaussian energy’. That part resulting from R2), denoted E2(k), 
has in the past been referred to as ‘non-Gaussian energy ’. As will be discussed in § 4 ,  
however, these phrases are no longer considered appropriate. We shall refer to El(k) 
as first-term energy and to E2(k)  as second-term energy. 

An additional characteristic of turbulence which will be found of interest is the 
energy transfer, T(k) ,  found by manipulating the Navier-Stokes equations into energy 
form to get 

T(k)  = - + + k  v E ( k )  
(:t 2 ,  

(u,(k“)uj(k-k’)u,(k‘))dk‘dk 

= 4nik2f&(k)J [2Ki3(k) KyL(k’) Kizn(k, k’)  

+K$%n( -k, k’-  k)K:z(k)KfA’(k-  k’)]dk’+O(K(2))3. (3.6) 

Since proper behaviour of the WH expansion seems to imply K(2) < K(l), it will be 
assumed that the term cubic in hr2) is negligible. The energy transfer is perhaps the 
most important characteristic of turbulence because it contains the lowest-order 
information related to the nonlinear, non-Gaussian modal interaction process. For 
this reason we shaIl consider T(k)  to be the characteristic third-order moment. 
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4. The principal difficulty with the Wiener-Hermite expansion 
As mentioned in the introduction, the WH expansion (and in particular, the fixed 

base formulation) has been unable to model the decay of homogeneous Burgers model 
turbulence for significant Reynolds numbers. The principal difficulty has been a loss 
of convergence due to the transfer of energy from the first kernel into the higher kernels. 
This cascading of energy through the expansion is necessary for a finite correlation time 
and is evidence of the fact that the WH expansion is not unique. Even if a random 
process is Gaussian, it is not required to have zero higher-order terms, even though 
the higher-order terms are themselves (slightly) non-Gaussian. A Gaussian process 
can be represented either by the first term alone, or by the first term along with a non- 
zero contribution from the higher terms. The situation is analogous to that of choosing 
co-ordinate axes to represent a vector: if a co-ordinate axis is chosen along the vector, 
the vector has but one component; on the other hand, if not, it may have many 
components. The difficulty involved in modelling the dynamics of a given process has 
been that of the tendency for energy to cascade from the first term into the higher 
terms even though the process remains nearly Gaussian. From this discussion it should 
be obvious that it is not proper to refer to El as ‘Gaussian’ energy and to refer to E, as 
‘non-Gaussian‘ energy. The loss of Gaussian energy to the higher terms was the major 
difficulty with the fixed base analysis of decaying Burgers model turbulence. The 
problem was more pronounced for moderate, or larger, Reynolds numbers or decay 
times. 

To overcome this difficulty (with the fixed base WH expansion) two basic changes 
are needed: first, we must use the ‘ moving base ’ analysis mentioned in the introduction 
wherein the WH functionals are allowed to change with time in such a way that they 
‘ convect with the flow ’ thereby retaining as much as possible of the Gaussian energy 
in the first term; then we must use the concept of renormalization as applied (Meecham 
1972; Meecham et al. 1975) to the Burgers model problem. This latter concept (re- 
normalization) is the following: suppose, for simplicity, we begin the problem with 
all of the Gaussian energy in the f i s t  term and integrate forward using the moving 
base expansion (to prevent, as much as possible, the transfer of Gaussian energy out 
of the first term). When, after some time, a significant amount of Gaussian energy has 
cascaded from the first term into the higher terms in spite of our efforts, we stop the 
integration process and redistribute the energy content of the expansion in such a way 
that we keep the total energy the same, minimize the high-order contribution to the 
energy, and minimize the unwanted changes in other measurable quantities, such as 
the third-order moments, of the process. By following this procedure, a significant 
improvement in the ability of the WH expansion to model the decay of homogeneous 
Burgers model turbulence has been achieved (Meecham 1972; Meecham et al. 1975). 
The application of this renormalization procedure to the problem of three-dimensional 
decaying isotropic turbulence is the principal new achievement of this research. 

5. The moving base expansion 
In  the most primitive form of the WH expansion, the fixed base expansion, the base 

functionals were held independent of time and all of the time variation of the expansion 
was captured in the kernels. The inability of the expansion in this form to model the 
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decay process of turbulence is well documentated (Orszag & Bissonnette 1967; Crow & 
Canavan 1970). Wiener himself recognized the difficulty of this fixed base approach and 
suggested that the base functionals be allowed to convect with the process being 
modelled. Doi & Imamura (1969) formulated the moving base approach by defining 
the time derivative of the three-dimensional ideal white noise process as follows: 

fii(k) = /Lijl(k-k’,k’)HE)(k-k’,k’)dk’. (5.1) 

They derived the symmetry condition on L (which is otherwise arbitrary) that guaran- 
tees that the base is undergoing a measure-preserving transformation in time so that 
all expectation values derived from the physical process are independent of L. In  
terms of L the right-hand side of (3.3) is 

-4JL$!,(k, -k’)K$S,(k-k’, k’)dk’, 

and the right-hand side of (3.4) is 

(277)”%(k,, k2) K%(k, + k2), 

L W l ,  k2) = Wijl(k1, k2) + Lilj(k2, k1)I. where 

By requiring that (3.3) and (3.4) admit the Gaussian equipartition solution of the 
inviscid Navier-Stokes equation, Bodner (1969) and Doi & Imamura (1969) derived 
the following for L: 

~ijl(k1, k,) = i (3” (k1 + k 2 ) , ~ ~ +  k2) ~ k 2 )  KWJ. (5.2) 

In  terms of this moving base the differential equations for the WH kernels are 

- + k2v KL:)(k) - 2i - P,jl(k) K$$(k)Ki;A(k, - k )  d k  ( i t  ) I 
(J3 s 

(at + I k, + k212 v) Ki2(kl, k2) 

= -2i - k,P,,(k) q,(k-k)K%i(k’)K$f(k-k‘, k’)dk’, (5.3) 

and 
a 

- $+I+ k2)i3&(k1+ k2) [Kji)(k2) J$)(kl) +K$)(k1) J$)(k2)] 
3 

+ % (&) (kl + k2)lPij(k1 + k2) /[Kh%(k,, - k’) K;:&(kz, k’) 

+ K$z(k2, - k‘) K$&(kl, k’)] dk’ 

= - &(k1+ kz)lK$;’(ki + k2) [qm(k2) KjA’(k1) + qn(kl) Kz(ks)]. (5.4) 

6. Renormalization 
Any moment of the random process can be calculated directly from the WH kernels. 

Examples shown in the preceding sections were the energy spectrum, E(k) ,  given by 
(3.5) and the energy transfer, T(k) ,  given by (3.6). Theinverse problemisnot so obvious. 
For example, suppose the random process were characterized to third order by speci- 
fication of the second- and third-order moments E ( k )  and T ( k ) .  Can (3.5) and (3.6) be 
inverted to calculate the first and second WH kernels corresponding to the specified 
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E(k)  and T(k)?  These equations are, after all, two equations for the two unknowns 
K(l) and Besides the obvious mathematical complexity apparent in (3.5) and (3.6), 
there is the basic question of uniqueness of the expansion itself. As stated before, a 
given random process does not have a unique WH expansion. As an obvious result, 
(3.5) and (3.6) cannot be inverted to give unique K(l) and S2) for specified E(k)  and 
T(k) .  I n  some sense, there must be a family of solutions to this problem. If we attempt 
to invert this set of equations, we shall ultimately have to choose one member of the 
solution family. And how shall we choose a member T It seems obvious that we should 
choose the one which optimizes the convergence of the WH expansion (i.e. maximize 
El and minimize E2). This optimization concept is the central idea of the renormaliza- 
tion technique. 

The concept of renormalization as outlined in the previous sections is as follows: we 
begin the problem with all of the Gaussian energy in the first term and integrate forward 
using the moving base expansion (to prevent as much as possible the transfer of Gaus- 
sian energy out of the first term). When, after some time, a significant amount of 
Gaussian energy has cascaded from the first term into the higher terms we stop the 
integration process and redistribute the energy content of the expansion in such a way 
that we optimize the convergence without changing the moments of the random 
process. To second order in the WH series, the only moments of the random process are 
a second-order moment, e.g. E(k) ,  and a third-order moment, e.g. T(k) .  Hence the 
renormalization is nothing more than solving the inverse problem of (3.5) and (3.6) for 
specified E ( k )  and T(k) .  The effectiveness of this procedure as a means of solving the 
initial-value problem of decaying isotropic turbulence will be demonstrated in the 
following sections. 

An exact inverse of (3.5) and (3.6) by pure analysis does not seem possible. As 
a reasonable alternative we have developed the following approximate technique : as 
a first approximation, assume a(2) z 0 and solve (3.5) for a(1); then assume a form for 
R(2) with arbitrary constants to be determined by a least-square optimization pro- 
cedure which simultaneously minimizes I?, (holding E fixed) and optimizes the fit to 
(3.6) (withR(l)usedforK(l)); finally the newly calculatedR(2)is substitutedinto (3.5) and 
a refined I?T(l) is calculated. The tilde over a symbol is used throughout to represent 
quantities after renormalization. The set of kernels found in this way optimizes the 
convergence of the WH expansion, matches perfectly the second-order moment, E(k) ,  
and minimizes the error in matching the third-order moment, T(k) .  

To proceed as outlined above, let us first of all assume that the turbulence is isotropic 
so we can write the first kernel using a scalar generator O(k)  as follows: 

ff$j'(k) = O(k)qj(k). (6.1) 

The second kernel is more complicated - a third-order tensor function of two vector 
arguments. Meecham &, Jeng (1968) have shown that Z2)can be written as a combina- 
tion of four scalar generating functions. If we (in keeping with the truncation assump- 
tion) suppose that is small and hence that the terms in (5.4) quadratic in @) 

can be neglected, then can be written in terms of one scalar function as follows 
(assuming we begin with I@) = 0 a t  time to ) :  

@)l(kl, k2) = @I+ k2Im P,,(ki + k2) [f'mj(ki) f'ni(k2) F(k1, k2) 

+Ej(k l )  f 'Uk~P(k2,  k1)1* (6.2) 
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The differential equation for P is 

Integrating (6.3), we have 

P(kl, k,) = SfI exp [ 1 k, + k2I2 v(t’ - t)] O(kl, t ‘ )  [ O(k2, t’) - O( 1 k, + k,(, t’)] dt’. 

Using the mean value theorem, we have 
1 -exp[Ikl+k2)2v(t0-t)] 

1 %  + k212 v 
P@l,  k,) = *mu C m 2 )  - O( Ikl + k2l )I Y 

where g(k)  is a characteristic ‘mean value’ of O ( k )  for the time interval [to,t]. For 
large Reynolds numbers the multiplicative factor above can be replaced by a constant; 
hence, the function P can be approximated by 

P(kl,k2) = &W(k,)[W(k2)- W(lkl+k2l)17 (6.4) 

where U’(k) is a scalar function to be determined. Representing W(k)  as an expansion 
with respect to some set of base functions (f,(k)}, we have 

N 

Substit’uting (6.5) into (6.4) we have 

1 N  N 
P(k,, k2) = 5 c c arnanCfm(kl)fn(k2)-frn(kl)fn(lkl +k2I)1* 

m = l  n = l  

Defining A,, = a,an we have 
N‘ 

m n = l  
P(k1, k2) = c Amngmn(k1, k ~ ,  (6.6) 

where grnn(k1, k2) = ifm(k1) [fn(k2)-fn(lkl+k21)1. (6.7) 
Since P is linear in A and R2 is quadratic in 1”, we can write 8, as the following quadratic 
form : 

(6.8) 

where eij,mn are simply integrals of gij  and gmn. The energy transfer, on the otherhand, 
is linear in P and hence is linear in A.  Thus Tcan be written in the form 

N a  N a  

i j=1 m n = l  
~2 = Sorn ~ 2 ( k ) d k  = c I= AijAmneij,mn’ 

N2 

i j = 1  
F ( k )  = Aijfij(k), 

where tii are integrals of 0 and gij. We have for the error due to the approximation 

s(k) = T(k)  - !F(k). 

The total squared error in energy transfer is 

(6.10) 

e2 = e (k )2dk  

(6.11) 



334 H .  D.  Hogge and W .  C .  Meechum 

If we want to minimize B2 and e2 simultaneously we must introduce a weighting 
parameter A and solve for A ,  such that 

(6.12) 

This A gives the weight assigned to the two simultaneous minimizations. Substituting 
(6.8) and (6.11) into (6.12), we have 

Equation (6.13) is a linear system to be solved for Aij  thereby producing P .  Then (3.5) 
is used to recalculate O ( k )  thus completing the inverse solution to (3.5) and (3.6) for 
the specified E(k)  and T ( k ) .  

7. Computational results using the moving base without renormalization 
We have solved the initial-value problem consisting of (5.3) and (5.4) (ignoring the 

term quadratic in P)) and the following initial conditions: K@) was set to zero and 
K(l) was chosen so that the energy spectrum was (the Kolmogorov form) 

E ( k )  = U- ug (-) k [b2+ ($)']-" 
ko ko 

This form of the energy spectrum was chosen to give k4 behaviour for small k and k-Q 
behaviour for large k .  The constants a and b were chosen to be 1-09 and 0.645 by re- 
quiring E ( k )  to peak at k, and to integrate to (#) u;. It should be noted that we have 
chosen non-equilibrium initial conditions by choosing zero K@) and hence zero third 
(and higher odd) order moments. We expect the differential equations to generate an 
equilibrium state by the appropriate evolution of K(2). We have chosen an initial 
energy spectrum which has the presumed k-9 equilibrium shape in the inertial subrange 
but does not have the viscous cut-off. 

We have solved the initial-value problem described above (at least for moderate 
time) for three values of the initial Reynolds number: Re = uo/k,v  = 100, 1000, and 
iO000. The resulting one-dimensional energy spectra are shown in figure 1. The one- 
dimensional energy spectrum was chosen because this quantity is most easily com- 
pared with measured data. The energy spectra are non-dimensionalized in ' universal 
equilibrium ' form and are compared with the same quantity obtained from two experi- 
ments (Grant, Stewart & Moilliet 1961; Kistler & Vrebalovich 1966). The solid lines are 
the calculated spectra and the symbols are the measured data points. The calculation 
has been quite successful in capturing the following features of the universal equi- 
librium spectrum: (1)  the wavenumber of the viscous cut-off, (2) the spectrum shape 
in the far dissipation range, and (3) the amplitude constant (Kolmogorov constant) 
appearing in the energy spectrum. The arbitrary initial value of the Kolmogorov 
constant was (see the dashed line in figure 1 )  several times the correct value - which 
is then later calculated. The fact that the energy spectrum normalized in this way is 
properly scaled also indicates that the energy dissipation has been properly calculated. 
An earlier, very preliminary, effort was made to apply the moving-base procedure to 
the Navier-Stokes equation (Meecham & Clever 1971), but it failed because of com- 
putational difficulties, since resolved. 
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FIGURE 1. One-dimensional spectra normalized in universal equilibrium form. Solid lines are 
calculated spectra for Reynolds numbers indicated. Dashed line is initial spectrum for Re = 1000. 
Symbols are measured data: 0, from Kistler & Vrebalovich (1966); 0, from Grant, Stewart & 
Moilliet ( 196 1). 

These results are not yet a complete solution to the problem of decaying isotropic 
turbulence. As discussed previously, the principal difficulty with the WH expansion 
is the transfer of energy out of the first term and the consequent breakdown of the 
expansion, even though the process remains approximately Gaussian. In  fact, the 
rate of breakdown increases with Reynolds number. The results shown in figure 1 are 
for dimensionless times uokot = 0.5, 0.5, and O.15for Re = 100,1000, and 10000. These 
times seem to be the limit of the simple moving base analysis for Re = 1000 and 10 000; 
without renormalization, the calculation breaks down a t  later times. 

It is noted that these results are obtained using an arbitrary initial constant times 
the (correct) k-f spectrum. The moving base expansion cannot recover from an initial 
spectrum which is too far from its equilibrium form because significant contributions 
from (neglected) high-order terms are required during adjustment to equilibrium. It is 
significant, however, that in such a short time the analysis has been able to generate 
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FIGURE 2. Energy transfer in the inertial subrange. T(k ,q )  is the energy 
transferred from wavenumber q into wavenumber k. 

correctly two important aspects of the energy spectrum: the viscous cut-off and the 
Kolmogorov constant. 

Perhaps as significant as the results presented above for the energy spectrum, is the 
third-order moment (initially zero) generated by the analysis. Consider the energy 
transfer as an integral: 

where 

T(k, 9 )  = 8n2&24jl(k)/ff  (2K$$(k) Kyi(q) Kiz,(k, q) + K\z,( - q, q - k) 
0 

x KE(q)  K/i)(k-q))sinOdO, 

The angle 6' is the angle between the vectors k and q. 
The double wavenumber energy transfer T(k,q) can be interpreted as the energy 

transferred from wavenumber q into wavenumber k. The result of calculating T(k,  q )  
from the same initial-value problem considered above for Re = 1000 and for time 
uo k,t = 0.55 is shown in figure 2 for three values of q in the inertial subrange (q = 2k,, 
4k0, and 8k,). The result is a dramatic demonstration of the energy cascade in the 
inertial subrange. It is seen that the wavenumber q receives energy from the wave- 
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FIGURE 3. Evolution of a spectrum that initially had a bump in the inertial subrange. 

numbers within approximately one octave below, and transfers energy to the wave- 
numbers within approximately one octave above. 

As a final example using the moving base analysis alone, the following reveals the 
nature of the transfer of Gaussian energy out of the first term. Consider the same initial- 
value problem as before except for an artificial spike, doubling the equilibrium 
spectrum, in the inertial subrange. Figure 3 shows both the initial spectrum and the 
spectrum at time uokot = 0.2. In  addition to the generation of the viscous cut-off, the 
analysis has proceeded to smooth out and reduce the spike. The spectrum is attempting 
to evolve into the equilibrium form. An interesting phenomenon is the detailed nature 
of the evolution. At the wavenumber of the spike, the first-term energy El has taken 
a large dip and the second-term energy E, is essentially the total energy. The conjecture 
is that the relative magnitudes of El and E, are not necessarily indicative of the 
relative Gaussian and non-Gaussian content of the spectrum. In  fact, all calculations 
of this type thus far indicate the same trend: the reduction of El is greatest for the 
wavenumber range where the energy spectrum departs most from the equilibrium form. 
It seems that, whenever it is necessary to transfer energy from one wavenumber to 
another in order to achieve the equilibrium form, the expansion prefers to make that 
transfer from the first term into the higher terms instead of between wavenumbers in 
the first term. 

8. Results for renormalization 
We have applied the renormalization principle to the initial-value problem con- 

sidered in the preceding section. The case of an initial Reynolds number Re = 1000 and 
a later time uo kot = 0.25 was selected. For this case El ko/u: = 1.03, and E, ko/u,2 = 0.26 

I2 F L M  85 
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FIGURE 4. Renormalization performance map. 

before renormalization. The wavenumber axis was partitioned into a set of 10 approxi- 
mately octave band histograms to produce the set of base functions f,(k) used in (6.5). 
In  terms of this set of base functions, the assumed form of has 100 unknown 
constants which must be found by solving (6.13). This will be referred to as a 100 
degree-of-freedom (DOF) renormalization. 

Since the renormalization is an attempt to minimize B2 and the error produced in 
T(E) simultaneously, we shall represent the effectiveness of the renormalization by 
a ‘performance map’ consisting of a plot of E, us. energy transfer error. Such a per- 
formance map for the case considered here is shown in figure 4. We have plotted E2 
(after renormalization) as a percentage of E2 before renormalization us. the mean- 
squared energy transfer error as a percentage of the integral of the square of T(k) .  The 
lower curve is the performance map of the 100 DOF renormalization with A [see (6.13)] 
as a parameter. The upper curve is the corresponding performance map of a 49 DOF 
(i.e. 7 histograms) renormalization of the same case. 

As can be seen from figure 4, reasonably small energy transfer can be achieved only 
for A slightly less than unity (because, of course, of the relative size of the functions 
involved). For example, the error is insignificant for A = 0-999 and yet the resulting B2 
is only 11 yo of the E, before renormalization. The results are not as good for the 49 DOF 
renormalization. 

The procedure for solving the initial-value problem is to accept the results of the 
renormalization as the starting values of the next phase of the integration process. The 
results of following this procedure are shown in figure 5. We show separately the time 
histories of E ,  El and E,. The representation was renormalized at time intervals of 
0*2/(u,k,) .  Also shown in the figure (dashed lines) are the extensions of the curves which 
would have occurred in the absence of renormalization. The total energy decay, in the 
absence of renormalization, shows a tendency to level off. With renormalization, on 
the other hand, the decay rate seems to be sustained at a more even rate. Perhaps this 
phenomenon indicates that, as the second term grows beyond the minimum required 
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FIUURE 5 .  Energy time histories for initial Reynolds number of 1000. The solid lines are the results 

of using renormalization. The dashed lines are the results obtained without renormalization. 

to capture the inherent non-Gaussianity, the anomalous second-term contribution 
detracts from the ability to transfer energy. 

Further evidence that the energy decay is nearly correct for this case is given in 
figure 6. This figure is a plot of E(O)/E(t)  vs. time. It has been observed in the past 
(Batchelor 1960, p. 135) that this quantity should grow linearly with time. It seems 
reasonable to conclude that the computed results presented here are following that 
same trend, as opposed to the results without renormalization, which again show 
a levelling-off effect. 

Furthermore, consider figure 7. This figure is a plot of the dimensionless dissipation 
rate, A = (L,/u3)du2/dt, found (Batchelor 1960, p. 106) to be of order unity. The 
result shown in figure 7 justifies the conclusion that the rate of energy dissipation is 
correctly calculated here. This is a property which was never achieved in the many 
studies of Burgers model turbulence. 

12-2 
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FIGURE 6. Plot of E(O)/E(t) ws. time for initial Reynolds number of 1000. 
Linear growth agrees with experimental observations. 
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FIGURE 7. Dimensionless energy dissipation rate us. time 
for initial Reynolds number of 1000. 
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FIGURE 8. Dimensionless combination of second-order movements 
218. time for initial Reynolds number of 1000. 

Two other quantities, which were measured by the early workers in turbulence 
(Batchelor 1960, p. 118), are shown in figures 8 and 9. First, figure 8 is a plot of the 
dimensionless ratio 

as a function of time. This quantity is very stable with a value of about 3. Batchelor 
(1960, p. 118) presents measurements of the same quantity showing it to range from 
about 3 for low Reynolds number to about 4 for high Reynolds number. Figure 9 is 
a plot of the dimensionless third-order moment 

IOrn k4E(k) dk 

[ jOw k2E(k) dk]' 

as a function of time. This quantity is somewhat more erratic but is consistent with 
the findings of Batchelor (1960, p. 118), who shows a value of 0.3 for high Reynolds 
number turbulence. 

All of the results presented thus far have been derived from initial conditions chosen 
to  be near the expected equilibrium solution. Using the fixed base or the moving base 
analysis, it was not usually possible to start in a configuration far from equilibrium. 
The expectation has been that the renormalization, on the other hand, would allow the 
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FIGURE 9. Dimensionless third-order moment w8. time for initial Reynolds number of 1000. 

calculation to proceed even when the initial conditions are highly non-equilibrium. 
The following two examples have been chosen to demonstrate this capability. In each 
example, the problem solved is basically the same as the previous case (Reynolds 
number of 1000) but the initial spectrum is perturbed from the Kolmogorov spectrum 
in the inertial subrange. I n  the first case, the initial spectrum has a spike superimposed 
on the otherwise Kolmogorov inertial subrange. In  the second example, a dip is super- 
imposed on the inertial subrange. In  each case, it is expected that the evolution of the 
process will proceed to remove the perturbation. 

Figure 10 is a plot of the inertial-subrange portion of the spectrum which initially 
had a spike. It is clear that the process is trying to remove the spike. The short term 
effect of the spike is to produce waves in the inertial subrange. Ultimately, however, 
the waves die out and a nearly Kolmogorov spectrum is recovered. Figure 11 shows 
essentially the same results for the initial spectrum with a dip in the inertial subrange. 
For comparison, figure 12 is a plot of the corresponding result for the initial spectrum 
with no perturbation. 
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FIGURE 10. Evolution of spectrum that initially had a bump in the inertial subrange. -, 
initial spectrum; ---, spectrum at time u,k,t = 0.3; * . . -, u,k,t  = 0.6. 

9. Calculation of flatness factor 
Fundamental to the WH expansion is the assumption that turbulence is nearly 

Gaussian. It has been shown previously that the third-order moments [e.g. T(k)]  are 
small. As a check on the near Gaussianity of the turbulence (and in particular the WH 
representation) consider the flatness factor of ul, the first component of the velocity 
vector : 

F.F. = <u:)(u:)-~. (9.1) 

We expect to find a value near 3, the flatness factor of a Gaussian random variable. 
To evaluate the flatness factor in terms of the WH kernels we first note that the 

second-order moment is simply related to the total energy by 

(u:) = $E = fJomE(k)dk .  (9.2) 

The fourth-order moment consists of three types of combinations of first and second 
kernels as follows: 

(ut) = (Uf ) (O)  + ( U p 2 )  + (u4,)(4), (9.3) 
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FIGURE 11. Evolution of spectrum that initially has a dip in the inertial subrange. -, 
initial spectrum; ---, spectrum at time u,k,t  = 0.3; * ., u,k,t = 0.8. 

where (ut)(n) = o(p3q4-n py). 
The zeroth-order term is simply related to the first kernel energy as follows: 

(9.4) (u:)(O) = 4E2 
3 1' 

The second-order term is found to be 

(u$) (~)  = $E,Ez + %(I1 + I2 +Is), 

where I, = (27~)-'/C,,(k) Cij,(k) dk, 
I, = (27~)-~SC~~~(k)C,,(k)dk, 

I3 = ( 2 7 ~ ) - ~ / C ~ ~ , ( k )  C,,(k) dk, 

Ci,(k) = - i (27~)-~ /  K\2(kl) K$t)(kl, k) dk,. and 

(9.5) 

We shall not attempt to calculate the term which is fourth-order in the second kernel. 
To do so would be a laborious calculation and should contribute very little to the final 
answer. 
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The flatness factor was calculated for the Re = 1000 case presented earlier and the 
results are given in figure 13. Plotted separately as functions of time are F.F., F.F.(O), 
and F.Fc2), where 

and F.F. = F.F.(o)+F.F.(2). 

The dashed lines indicate the breaks a t  which the calculation was renormalized. 
Notice that the total flatness factor remains near the Gaussian value of 3 for all time. 
The contributions to the total, on the other hand, are not a t  all constant. The zeroth- 
order contribution starts out large but rapidly decreases while the second-order 
contribution starts out small and increases. This behaviour indicates the rapid shift 
in the content of the WH expansion from the first term to the second term even though 
the random process remains nearly Gaussian. The effect of renormalization is to put 
as much as possible of the total energy back into the first term. The fact that the total 
flatness factor changes when the process is renormalized probably indicates the extent 
to which fourth-order moments are changed by renormalization. Recall that the 
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FIGURE 13. Flatness factor us. time for initial Reynolds number of 1000. 
Also shown are zeroth-order and second-order contributions. 

process was designed to be measure-preserving only up to third order. The error 
introduced in the fourth-order moment by renormalizing appears to be about 5 %. It 
is also possible that the neglected fourth-order term (F.F.(4)) could be contributing 
somewhat to a change in flatness factor due to renormalization. 

10. Concluding remarks 
It has been shown that significant results can be obtained from the moving base 

WH expansion for limited decay times. For fluctuation Reynolds numbers up to 
10000 (mean flow Reynolds numbers of a half million) it is possible to calculate (to 
within experimental error) the Kolmogorov constant and the viscous-range spectral 
behaviour. It is necessary to begin the calculation with the five-thirds spectrum but 
the equilibrium form is preserved. The calculation is completely deductive, of course, 
and hence requires no adjustable parameters. Furthermore, by using the renormaliza- 
tion scheme, the calculation can be extended to decay times larger than those possible 
with the moving base expansion alone and can be started from initial spectra other 
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than the Kolmogorov form. The resulting calculation procedure is thus a solution to 
the problem of decaying isotropic turbulence (assuming it is possible to continue 
renormalizing as long as necessary). Further work is required to define the limitations 
of this procedure. In  addition, the flatness factor of the turbulence was calculated. It 
should be noted that production runs on the UCLA IBM 360/91 digital computer cost 
typically but $20-30. 

It is a pleasure to acknowledge partial support from the NASA Ames Research 
Center. Portions of this research were presented at  the 14th International Congress of 
Theoretical and Applied Mechanics, Delft, Netherlands, 30 August to 4 September 
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(1977). 
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